\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx\) [200]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 156 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {(7 A-3 B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(5 A-B) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

-1/4*(7*A-3*B)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2
)-1/2*(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2)+1/2*(5*A-B)*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(
a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3057, 3063, 12, 2861, 211} \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {(7 A-3 B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(5 A-B) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

[In]

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

-1/2*((7*A - 3*B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[
2]*a^(3/2)*d) - ((A - B)*Sin[c + d*x])/(2*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)) + ((5*A - B)*Sin[c
+ d*x])/(2*a*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\frac {1}{2} a (5 A-B)-a (A-B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(5 A-B) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {\int -\frac {a^2 (7 A-3 B)}{4 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{a^3} \\ & = -\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(5 A-B) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {(7 A-3 B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{4 a} \\ & = -\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(5 A-B) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {(7 A-3 B) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 d} \\ & = -\frac {(7 A-3 B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {(5 A-B) \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.59 (sec) , antiderivative size = 423, normalized size of antiderivative = 2.71 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {\cos ^3\left (\frac {1}{2} (c+d x)\right ) \left (30 (A-B) \arctan \left (\frac {1-2 \sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )-30 (A-B) \arctan \left (\frac {1+2 \sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )-\frac {20 (A-B) \sqrt {\cos (c+d x)}}{-1+\sin \left (\frac {1}{2} (c+d x)\right )}-\frac {20 (A-B) \sqrt {\cos (c+d x)}}{1+\sin \left (\frac {1}{2} (c+d x)\right )}+\frac {5 (A-B) \left (-1+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\cos (c+d x)} \left (\cos \left (\frac {1}{4} (c+d x)\right )+\sin \left (\frac {1}{4} (c+d x)\right )\right )^2}-\frac {5 (A-B) \left (1+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\cos (c+d x)} \left (-1+\sin \left (\frac {1}{2} (c+d x)\right )\right )}+\frac {(A+3 B) \csc ^3\left (\frac {1}{2} (c+d x)\right ) \left (5 (1+4 \cos (c+d x)+\cos (2 (c+d x))) \left (1-\cos (c+d x)+\text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos (c+d x) \sqrt {2-2 \sec (c+d x)}\right )-2 \operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right ) \sin (c+d x) \tan (c+d x)\right )}{2 \cos ^{\frac {3}{2}}(c+d x)}\right )}{10 d (a (1+\cos (c+d x)))^{3/2}} \]

[In]

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

(Cos[(c + d*x)/2]^3*(30*(A - B)*ArcTan[(1 - 2*Sin[(c + d*x)/2])/Sqrt[Cos[c + d*x]]] - 30*(A - B)*ArcTan[(1 + 2
*Sin[(c + d*x)/2])/Sqrt[Cos[c + d*x]]] - (20*(A - B)*Sqrt[Cos[c + d*x]])/(-1 + Sin[(c + d*x)/2]) - (20*(A - B)
*Sqrt[Cos[c + d*x]])/(1 + Sin[(c + d*x)/2]) + (5*(A - B)*(-1 + 2*Sin[(c + d*x)/2]))/(Sqrt[Cos[c + d*x]]*(Cos[(
c + d*x)/4] + Sin[(c + d*x)/4])^2) - (5*(A - B)*(1 + 2*Sin[(c + d*x)/2]))/(Sqrt[Cos[c + d*x]]*(-1 + Sin[(c + d
*x)/2])) + ((A + 3*B)*Csc[(c + d*x)/2]^3*(5*(1 + 4*Cos[c + d*x] + Cos[2*(c + d*x)])*(1 - Cos[c + d*x] + ArcTan
h[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]) - 2*Hypergeometric2F1[2, 5/
2, 7/2, -(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]*Sin[(c + d*x)/2]^4*Sin[c + d*x]*Tan[c + d*x]))/(2*Cos[c + d*x]^(3/
2))))/(10*d*(a*(1 + Cos[c + d*x]))^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(352\) vs. \(2(131)=262\).

Time = 7.91 (sec) , antiderivative size = 353, normalized size of antiderivative = 2.26

method result size
default \(\frac {\left (7 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-3 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+14 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}-6 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}+7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, A \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}-3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, B \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}+10 A \sin \left (d x +c \right ) \cos \left (d x +c \right )-2 B \sin \left (d x +c \right ) \cos \left (d x +c \right )+8 A \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{4 a^{2} d \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {\cos \left (d x +c \right )}}\) \(353\)
parts \(\frac {A \left (7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+5 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+14 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+4 \sqrt {2}\, \sin \left (d x +c \right )+7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{4 d \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {\cos \left (d x +c \right )}\, a^{2}}+\frac {B \sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {a}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, \left (-\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-3 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {2}}{4 d \sqrt {-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}\, a^{2}}\) \(379\)

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/a^2/d*(7*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*cos(d*x+c)^2*arcsin(cot(d*x+c)-csc(d*x+c))-3*B*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*cos(d*x+c)^2*arcsin(cot(d*x+c)-csc(d*x+c))+14*A*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*cos(d*x+c)*arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)-6*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*arcs
in(cot(d*x+c)-csc(d*x+c))*2^(1/2)+7*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*A*arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)-
3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*B*arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)+10*A*sin(d*x+c)*cos(d*x+c)-2*B*sin
(d*x+c)*cos(d*x+c)+8*A*sin(d*x+c))*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))^2/cos(d*x+c)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.29 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left ({\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (7 \, A - 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, {\left ({\left (5 \, A - B\right )} \cos \left (d x + c\right ) + 4 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(sqrt(2)*((7*A - 3*B)*cos(d*x + c)^3 + 2*(7*A - 3*B)*cos(d*x + c)^2 + (7*A - 3*B)*cos(d*x + c))*sqrt(a)*a
rctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d
*x + c))) - 2*((5*A - B)*cos(d*x + c) + 4*A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*
cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))/((a*(cos(c + d*x) + 1))**(3/2)*cos(c + d*x)**(3/2)), x)

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2)),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2)), x)